
UCRL-CONF-208613

A New Vista in Scientific Data
Management

J. Keasler

December 15, 2004

Nuclear Explosives Code Developers' Conference
Livermore, CA, United States
October 4, 2004 through October 7, 2004

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Proceedings from the NECDC 2004

Keasler

1

A New Vista in Scientific Data Management

Jeff Keasler

Lawrence Livermore National Laboratory, Livermore, California, 94550

This paper examines the use of an in-core database in place of traditional
data structures in two ASC codes. Results so far indicate a dramatic
reduction in code, coupled with an increase in functionality. Performance
impact has been around one percent for the majority of problems tested.
Debugging has been the major roadblock thus far, and a portable browser
tool has been written that will soon work with a variety of debuggers.

Introduction
Within the last ten years, many 2D physics codes have been rewritten to work in 3D

geometries. In many cases, the rewrite has offered little in the way of new physics
capability, yet an enormous effort has been spent on “computer science” issues. In
examining the old and new codes, there is often not a fundamental improvement in
software methodology. If “computer science” issues are costing us so much time in
development and getting in the way of our physics work, how can we say fundamental
improvements in software design are not as important to address as the physics? This
paper examines how the use of database technology can help increase the ratio of physics
to non-physics programming done during the code development process.

The idea of using an in-core data registry (called a database in this paper) in scientific
software is not new. However, many data management systems in the literature tend to
be ad hoc, hard to learn due to the size of their API, hard to use due to their conceptual
complexity, or they tend to have low performance. In other cases, the overall
functionality provided by these systems is good and improving, but there are still barriers
to widespread usage.

The database described in this paper is called Vista. Vista is simple to learn, relatively
efficient, and easy to implement as a small library.

The purpose of this paper is not to convince others to use Vista, but rather to get
people to examine their own software and evaluate the pros and cons of using a database
in place of traditional data structures. While a database will not be appropriate for all
applications, it is appropriate for many science based codes, and its benefits are worth
exploring.

Proceedings from the NECDC 2004

Keasler

2

The Vista Database

Figure 1. Database diagram for the four finite element, two dimensional mesh shown. The legend
below the mesh highlights Vista’s key features. Each box in the data diagram represents a View.

At the core of Vista is a data structure called a View. A View encapsulates a subset
of a mesh (Fig. 1). Views can be arranged in a scoped hierarchy to efficiently encapsulate
data. A View is defined to be an IndexSet and four Tables:

• IndexSet – Contains identifiers for all mesh entities contained in the View.

• Relation Table – Contains topological relationships between this View and
other Views.

• Field Table – Contains discrete Fields which hold the bulk data for the View.

• Parameter Table – Contains Parameters which hold the non-bulk View data.

• View Table – Contains child Views.

A Table is a container such as an array or a hash table. A Vista Table is an extension
of a traditional key/value table in that each table entry has additional properties:

• Aliasing – The ability to use two or more keys to refer to the same value.

• Attributes – The ability to attach additional information to each table entry.

• Depth – The ability to manage multiple copies of each table entry.

Vista’s simple definition allows for a small and highly efficient implementation. Its
consistent structure allows the user to replace many brute-force or cut-paste-modify
sections of code with a compact, consolidated algorithm. Vista is not appropriate as a
replacement for all data structures, but is powerful and elegant where it can be leveraged.

Elements
ElemToNode

pressure
volume
clength

Concrete (mix)
damage
pressure
volume

Concrete (pure)
damage

HE (pure)
beta

HE (mix)
beta

pressure
volume

Edge
s

Advect
EdgeToElem

flux

Nodes
Position(2)
Velocity(2)

HE
Lighting time

Mesh
cycle
time

View (IndexSet)
Relation

Field
Parameter
Attribute

thermodynamic
thermodynamic

H

H C

C

Proceedings from the NECDC 2004

Keasler

3

C++ implementation of Vista

Figure 2. This example demonstrates usage of a C++ implementation of the Vista database.

Although the Vista specification is language neutral, C++ was chosen for the
reference implementation. Only the basic encapsulation features of C++ were used, and
care was taken to avoid constructs that could introduce portability or performance
problems.

A C++ code sample is shown in Fig. 2. This code sample creates “Mesh” and
“Particles” Views. The code required for the creation of the other Views is similar.

Note that character strings are used in the code to identify database variables. Integer
tags could be used just as easily, and can be implemented much more efficiently.

In the code, the x coordinate field is retrieved using `particle->fieldReal(“x”)’. This
syntax is similar to a C language struct member reference, `particle->x’. There are extra
characters to type when using Vista, but the benefits described below far outweigh this
cost.

Vista in ALE3D
ALE3D is a large parallel hydrodynamics code developed at Lawrence Livermore

National Laboratory. Vista is currently being used to replace the high-level mesh objects
in ALE3D. Thus far, all of the node centered data used in ALE3D has been moved to
Vista. The node centered data is fully parallel, and exists over many subsets. This data
represents about a third of all field data, and was previously stored in C language structs.

ALE3D has seen a negligible performance impact for moving to Vista. The
performance impact is small because ALE3D can amortize each database lookup over a
vector of calculations. We have tested the limits of this by operating on vectors as small
as 64 values. In this case, we saw about a fifteen percent performance impact, however
this is good considering the database can still be optimized.

Converting ALE3D to Vista has required a large amount of work. The greatest effort
has been spent on maintaining backward compatibility with existing data structures as we
transition to the new. The reference implementation of Vista offers some help here by
allowing users to register pointers to exiting data structures in the database. This
registration capability also makes it fairly easy to support legacy physics packages.

Edges Elements Nodes
x
y

Mesh

Particles
x
y

charge

View *mesh = new View(“mesh”);
View *particles =
 mesh->viewCreate(“particles”,num);
particles->fieldCreateReal(“x”);
particles->fieldCreateReal(“y”);
particles->fieldCreateReal(“charge”);

double *x = particles->fieldReal(“x”);
double *y = particles->fieldReal(“y”);

Proceedings from the NECDC 2004

Keasler

4

Restart Files

Figure 3. This figure contains 14 of the 218 lines of driver code needed to write a restart file.

The Vista algorithm used to dump a restart file demonstrates the dramatic advantage
to be gained by using a database in place of traditional data structures. Fig. 3 shows how
a recursive procedure can be used to write a View tree.

The View tree contains many, but not all, of the maps, fields, parameters, and
attributes used by ALE3D. The View tree as represented in the restart file is identical to
the View tree representation in memory which is again identical to the View tree used in
whiteboarding. The use of a database produces end-to-end consistency in the data model
which helps to simplify code development and analysis.

The TransferView() routine in Fig. 3 accepts a data transfer class (Xfer) as an
argument. The transfer class is an interface to low level database file formats. The data
Xfer operator for writing is defined by five methods/functions:

• enterScope() – used to move into a new level of scope.

• arrayReal() – used to transfer an array of 64 bit real valued data.

• arrayInt() – used to transfer an array of integer data.

• string() – used to transfer an array of character data.

• exitScope() – used to move out of a level of scoping.

The simplicity of this interface makes it highly portable. It also allows ALE3D to
fully leverage tools that have been written for multiple database file formats.

ALE3D currently supports four file formats: PDB, HDF5, XML, and XDMF. The
transfer class for each of these requires about 120 text lines, and each supports extensive
error checking and the ability to handle strided data.

Overall, it takes around 300 lines of code to write a complete restart file using Vista.
This is a reasonably good improvement over the O(5000) lines of code used by many
large science codes.

 TransferView(Xfer *xfer, View *view) {

 xfer->enterScope(view->name) ;

 TransferIndexSet (xfer, view->indexSet()) ; // Transfer each
 TransferFields (xfer, view->fields()) ; // major part of
 TransferRelations (xfer, view->relations()) ; // the current
 TransferParameters(xfer, view->parameters()) ; // View.

 // Transfer all the children
 for (View::Iter child(view->views()); !child.en d(); child.next())
 TransferView(xfer, child.item()) ;

 xfer->exitScope(“..”) ;
 }

Proceedings from the NECDC 2004

Keasler

5

Network I/O
ALE3D is exploring the use of Vista in place of its current communication data

structures. This is cutting edge development and results look promising. We have
replaced a file containing 1500 lines of code with around 400 lines of code.

 In the original algorithm, we allocated a communication buffer then packed fields
member by member into the buffer. Next, we communicated the buffer and unpacked
fields member by member. We did this for fifteen different communication modes, each
acting on different fields which were defined over different mesh subsets. Since the mesh
subsets were not in any way associated with the field data, there was a large amount of
brute force code to grab the appropriate subset and field on a field by field basis as we did
the packing and unpacking.

In our new algorithm using the database, we can use attributes to mark fields that
need to be communicated. When we enter the communication routine, we pass in an
attribute name for the communication we want to perform and query the database for all
fields having that attribute. Attribute queries have been optimized in the database to
return a vector of fields. We loop over the vector of fields, pack the data, communicate
the data, and unpack the data into a vector of receive fields. Each database field is
implicitly associated with a subset, so this algorithm is compact and almost trivial to
implement.

The new algorithm results in much cleaner and compact code. ALE3D currently has
over ten source code files for communicating data between domains. These files are used
for communicating element centered data, material based data, mixed material data, etc.
Each of these files is loosely based on the same template found in the first file we
converted. If all goes well, we should be able to replace all of these files with a single file
containing the new methodology. This should greatly reduce code maintenance costs.

Future Work
We have demonstrated in this section how Vista works for file and network I/O. The

techniques described above should also be applicable to slide surfaces, user defined “edit”
variables, fine grained dynamic load balancing, adaptive mesh refinement, various
integration point schemes, and iterative convergence schemes.

Having a database will also allow us to easily reorganize our field data for cache
efficiency. Mowry [1] found that by merely changing the memory layout used in the
VPENTA benchmark from the SPLASH suite, a factor of three increase in performance
was achieved. Likewise, Edwards [2] has at times seen noticeable performance
improvement by rearranging field data contained in the SIERRA data registry. While
there is no guarantee similar modifications will increase performance for ALE3D, it’s
something we were not able to even think about before our data was stored in a database.

Proceedings from the NECDC 2004

Keasler

6

Vista in Diablo
Diablo is a parallel Fortran90 multi-mechanics code developed at Lawrence

Livermore National Laboratory. Vista currently handles Diablo’s restart capability. Vista
was chosen because it supports HDF5 and offers a pathway for using the VisIt
visualization tool, which will be discussed below.

An added bonus of using Vista is its ability to write restart files in a form closely
mirroring Diablo’s internal data structures and its ability to support new database file
formats with a very small amount of code.

Vista supports Diablo through a Fortran interface. The interface assists in reading
data from a restart file and/or registering pointers to Diablo’s data structures. The
interface also supports the ALE3D restart file write routine described in this paper.

Overall, the use of Vista in Diablo has been a success, but there have been three
awkward areas, mostly arising from the Fortran interface:

• Memory allocation – Fortran90 memory allocation is done by Diablo, so Vista
has to point to Fortran90 data. This removes some of Vista’s flexibility.

• Array swapping – The Vista database has an intrinsic array swapping
capability through the “depth” mechanism described above. It is awkward to
access this functionality through the Fortran interface. This is one area that
can be improved in the future.

• Reading vs. initializing data is conceptually awkward – The routine that
initializes the Vista database to point at Diablo data structures is only called
once during a code run. If the routine is called at timestep zero, it is only
responsible for allocating memory. If the routine is called to read a restart file,
then it must query data from the restart file and allocate memory. This dual
use of code has dramatically shrunk the size of the restart code when
compared to other file formats, but on the other hand it has also increased
conceptual complexity. We are currently looking into ways to simplify this
code model.

While Vista could benefit by improving its Fortran interface, it nonetheless has a
fairly good mechanism for interacting with legacy code.

Proceedings from the NECDC 2004

Keasler

7

Visualization

Figure 4. Selected fields of a Vista restart file as plotted by the VisIt visualization tool.

Vista restart files can be viewed with the VisIt tool developed by Lawrence Livermore
National Laboratory (Fig. 4), or by the ParaView tool developed by Kitware.

Currently, VisIt supports the Vista database through a specialized plug-in that works
with single part or multi-part Vista restart files. The plug-in can display 2D quadrilateral
or 3D hexahedral meshes produced by ALE3D’s 2D and 3D run modes. The plug-in can
also display the 3D meshes produced by Diablo.

Although the current VisIt plug-in is specialized for ALE3D and Diablo restart files,
there is enough topological information embedded within Vista restart files to write a
generalized Vista plug-in1. A generalized plug-in would decrease or even eliminate the
need for interactions between code teams and visualization teams, even when the code
team wants to change the form or contents of their database. It would also open the door
for code teams to be able to visualize arbitrary subsets of their data, rather than only the
restrictive subset of data that a particular file format such as SILO will support.

ParaView is a public domain visualization tool supported by several national
laboratories. Vista in ALE3D can write the XDMF format supported by ParaView.
XDMF is a combination of HDF5 and XML. Due to Vista’s simplicity, it took about two
hours to write a driver to output ALE3D data for this format.

1 A small amount of additional meta-data must be specified as attributes on Views in the database.

Proceedings from the NECDC 2004

Keasler

8

Debugging

Figure 5. The Vista data browser is interactive and aware of topological relations between entities.

One of the major drawbacks of using a database in place of traditional data structures
is debugging. Traditional debuggers support static data structures such as arrays and C
language structs. They do not contain built-in capabilities to browse user defined run-
time dynamic data structures such as linked lists, hash tables, and of course, our database.

To solve this problem, we wrote a database browser tool. This tool was written using
the open source Qt GUI product distributed by Trolltech. This allowed us to have a
portable browser tool with minimal effort. At present, the tool can only be used to
browse files, but will soon be extended to cooperate with a variety of debuggers.

There are three windows displayed in Fig. 5. The window on the left displays the
overall contents of the database. The window’s title bar is labeled with a mesh descriptor
(the 58th time step of an eight domain problem). The user selects fields in this window
for more detailed display.

The middle window in Fig. 5 is used to display fields in a database View. Here, the
user has selected the v (relative volume) and volo (reference volume) fields which reside
in the domain1/elem View (as labeled in the title bar of the window). Since both fields
are in the same View, only one window is displayed. The user has also created a derived
variable, v*volo, which gives the total volume for each element. A subset mask is applied
showing only elements where the total volume is greater than 0.0085. Note that element
2462 is highlighted in the middle window, and the window on the right in Fig. 5 contains
further information about this element.

The window on the right is the domain1/node View for element 2462. This window
appears when an element is selected in the domain1/elem window because there is a
topological relationship registered in the database associating each hexahedral element
with the eight nodes that define it. Note that the nodal integer identifiers for these eight
nodes are displayed in the window on the right. When that window initially pops up, only

Proceedings from the NECDC 2004

Keasler

9

those ids are displayed. The user must specifically request which nodal fields they want
to examine via the “field” form entry box in the window (here, x, y, z were selected).

 Note that all windows are real-time interactive. The user can select a new element in
the middle window to instantaneously update the details in the rightmost window.

No matter how clever the user, browsing this information in a debugger using
traditional data structures takes a great effort. Using a browser tool that works in
conjunction with a debugger, it takes just a few clicks of a mouse. Since debugging can
involve a large amount of data browsing, it is easy to see how the use of a database and a
browser tool should cut debugging time by an order of magnitude.

Conclusion

Realm vs.
Purpose Isolation Integration Storage

Physical IndexSet Relation Field

Conceptual View Attribute Parameter

Table 1 Vista contains all the features necessary for analysis and synthesis of data.

When compared to traditional data structures, the Vista database significantly
simplifies portions of code that require a large amount of subset manipulation or data
movement. There are two key reasons for this:

• Topological relationships between database entities are an integral part of the
database specification. In fact, most of the key concepts in Vista map directly
to subsetting capabilities (Table 1).

• All field data is stored in the database, rather than just a portion, making it
possible to apply general transformations to data with fairly small algorithms.

As this paper has shown, using a database has many advantages. The consistent data
layout provided by a database allows the programmer to write generic algorithms in a few
hundred lines of code that can replace thousands of traditional lines of code. The look-
and-feel of the database in the source code is not very different from the look-and-feel of
C language structs, making the database easy to learn and use by non computer scientists.
There is an end-to-end consistency in the data model across the white board, the internal
data structures, the restart files, the visualization tool, and the debugger tool. Debugging
may be simplified by an order of magnitude due to enhanced interactivity. Complexity is
reduced because there are fewer lines of code, fewer data structures to remember, and
fewer data models to remember. There also tends to be increased flexibility in data
intensive algorithms, which are typical of computer science centric code.

Proceedings from the NECDC 2004

Keasler

10

Acknowledgements
The work presented in this paper is a formal organization of code work done by a

large group of people. I would like to thank Edward Luke, Albert Nichols III, Rob Neely,
Ivan Otero, Dan Malmer, Mark Miller, Shawn Dawson and many others for the countless
hours of discussion, real world work, and experimentation that lead to the definition and
implementation of Vista.

This work was performed under the auspices of the U.S. Dept. of Energy by the
University of California, Lawrence Livermore National Laboratory, P.O. Box 808,
Livermore, CA 94551 under contract No. W-7405-Eng-48.

References
Mowry, Todd, “Tolerating Latency Through Software-Controlled Data Prefetching,” PhD

Dissertation, Stanford University, March 1994.

Edwards, H. Carter, Sandia National Laboratory, Albuquerque, New Mexico, private
communication (2004).

Edwards, H. Carter, “SIERRA Framework Version 3: Core Services Theory and Design,”
Sandia National Laboratory, Albuquerque, New Mexico, SAND REPORT
SAND2002-3616.

Luke, Edward, “A Rule-Based Specification System for Computational Fluid Dynamics,”
PhD Dissertation, Mississippi State University, December 1999.

Gerlach, Jens, “Domain Engineering and Generic Programming for Parallel Scientific
Computing”, PhD Dissertation, TU Berlin, July 2002.

